American University of Beirut Department of Electrical and Computer Engineering

Fall 2018 (November 9) – Quiz 2 Version A

One A4 sheet with notes (no solutions)
No Programmable Calculators
No Wireless Devices

Only work written on this set of question sheets will be graded.

DURATION: 90 MINUTES

APPLY TIME MANAGEMENT!

TOTAL OF 100 POINTS

NUMBER OF PAGES: 9

NUMBER OF PROBLEMS: 8

NO QUESTIONS ASKED DURING THE QUIZ, EXCEPT FOR SIMPLE LOGISTICS
SUCH AS EXTRA SCRATCH PAPER

Problem 1 (5 pts)

Find L_{eq} in the circuit below, if L=6~H. Circle the best answer.

3 H

4 H

6 H

1/3 H

1/4 H

1/6 H

Problem 2 (10 pts)

• A. (5 pts) V_T=20 V, Find |V_{Th}| in the circuit without R. Circle the best answer.

1 V

7 V

10 V

14 V

20 V

25 V

28 V

40 V

B. (5 pts) Find the value of R for maximum power transfer.

10 Ω

20 Ω

25 Ω

30 Ω

35 Ω

40 Ω

50 Ω

75 Ω

Problem 3 (5 pts)

The circuit on the left hand side is replaced by an equivalent circuit as shown on the right. Use multiple source transformations to find an expression for V_{eq} in terms of R, V_1 , V_2 , and V_3 :

 $V_1/2 + V_2/2 + V_3/2$

V₁/2+ V₂/4+ V₃/8

V₁/8+ V₂/4+ V₃/2

 $V_1/4 + V_2/2 + V_3$

 $V_1 + V_2 + V_3$

(V₁/8+ V₂/4+ V₃/2)/R

(V₁/2+ V₂/2+ V₃/2)/R

(V₁/2+ V₂/4+ V₃/8)/R

Problem 4 (15 pts)

A. (5 pts) The circuit is in DC steady state. V_s=80 V. Find the energy stored in the 1mF capacitance. Circle the best answer.

> 0 J, 0.8 J, 1.8 J, 3.2 J, 16.9 J, 17.7 J, 52.9 J, 54.7 J, 108.9 J, 112.1 J

B. (5 pts) Find the energy stored in the 0.5mF capacitance. Circle the best answer.

0 J, 0.8 J, 1.8 J, 3.2 J, 16.9 J, 17.7 J, 52.9 J, 54.7 J, 108.9 J, 112.1 J

C. (5 pts) Find the energy stored in the inductance. Circle the best answer.

0 J, 0.8 J, 1.8 J, 3.2 J, 16.9 J, 17.7 J, 52.9 J, 54.7 J, 108.9 J, 112.1 J

Problem 5 (15 pts)

A. (5 pts) The switch has been open for a long time and closes at t=0.
 V_s=20 V. Find v₁(0⁺) (voltage over the 1 MΩ resistance). Circle the best answer.

0 V 6.7 V 16.7 V 20 V 26.7 V 50 V 66.7 V 80 V

B. (5 pts) Find $i_x(0^+)$. Circle the best answer.

0 A

 $2.0 \mu A$

5.0 µA ...

6.67 µA

 $A\mu 0.8$

16.67 µA

20.0 µA

26.67 µA

50.0 µA

80.0 μΑ

C.(5 pts) Find $v_1(\infty)$ (voltage over the 1 M Ω resistance). Circle the best answer.

0 V

6.7 V

16.7 V

20 V

26.7 V

50 V

66.7 V

80 V

Problem 6 (17 pts)

For the circuit below, $V_s = 10V$.

 a) (8 pts) Write expressions for each mesh in the circuit in terms of the mesh currents, M and V_s (i.e. 4 expressions). Note to simplify each expression (group like variables).

b) (5 pts) Redraw the circuit for when $t\rightarrow \infty$,

 \P c) (4 pts) In the circuit of b), remove the 50 Ω resistor, and then find the Thevenin equivalent circuit with respect to terminals a-b.

Problem 7 (17 pts) I_s = 5A. Find the voltage $V_c(t)$ if the capacitor was uncharged before the switch is closed. (Hint: find the Thevenin or Norton equivalent circuit connected to the capacitance.)

Problem 8 (16 pts)
Let V_1 =8 Volts. If you are told that for some value of V_2 =M volts, the output voltage V_x = 1 Volts, Find V_x if the voltage V_2 is doubled to 2M volts.

